Multiparametric mri prostate procedure
Tartalom
Current clinical practices, often leading to overdiagnosis and overtreatment of indolent tumors, suffer from lack of precision calling for advanced AI models to go beyond by deciphering non-intuitive, high-level medical image patterns and increase performance in discriminating indolent from aggressive disease, early predicting recurrence and detecting metastases or predicting effectiveness of therapies.
To date efforts are fragmented, based on single—institution, size-limited and vendor-specific datasets, while available PCa public datasets e. The ProCAncer-I project brings together 20 partners, including PCa centers of reference, world leaders in AI and innovative SMEs, with recognized expertise in their respective domains, with the objective to design, develop and sustain a cloud based, secure European Image Infrastructure with tools and services for data handling.
Robust AI models are developed, based on novel ensemble learning methodologies, leading to vendor-specific and -neutral AI models for addressing 8 PCa clinical scenarios. To accelerate clinical translation of PCa AI models, we focus on improving the trust of the solutions with respect to fairness, safety, explainability and reproducibility.
Metrics to monitor model performance and a causal explainability functionality are developed to further increase clinical trust and inform on multiparametric mri prostate procedure failures and errors. A roadmap for AI models certification is defined, interacting with regulatory authorities, thus contributing to a European regulatory roadmap for validating the effectiveness of AI-based models for clinical decision making.
IIS La Fe has decided to publish a call for a job offer, by a competitive procedure, for a Pre-Doctoral Biomedical Engineer, to perform the tasks in the framework of the Project.